
Homework 13

Math 622

May 12, 2014

1. a) Write out a forward LIBOR model—see (10.4.19) in Shreve—for n = 3 and
δ = 0.25, with γ(t, T1) = 1, γ(t, T2) = 3, and γ(t, T3) = 2, on a probability space

(ω,F , P̃T4
) with a given Brownian motion W̃ T4 . Show how to define the T3-forward

measure, P̃T3 by a change of measure and also how to define the Brownian motion
W̃ T3 under P̃T3 .

b) Derive an HJM model consistent with this forward LIBOR model. This requires
you to define σ∗(t, Tj), j = 1, . . . , 4 and to construct, P̃ and W̃ , the risk-neutral
measure for prices in dollars and the associate Brownian motion; see Theorem 10.4.4
in Shreve. You have freedom in the definition of σ∗(t, T ). Choose it to be continuous
in t.

Discussion (Read this before doing problems 2 and 3.) Exercise 10.11, which you
did in a previous assignment, develops a basic formula for swaps. In the swap business,
floating rate payments are referred to as floating legs and fixed rate payments as fixed
legs. Assume the swap is initiated at T = 0 and that the payments involved in the
swap occur at intervals T1 = δ, T2 = 2δ, . . . , Tj = δj, . . . , Tn+1 = δ(n + 1). This is
called a swap of tenor Tn+1. The holder of a receiver swap receives fixed leg payments
and pays floating legs. The holder of a payer swap receives floating legs and pays
fixed legs.

Suppose the floating rate over interval [Ti−1, Ti] is spot LIBOR L(Ti−1, Ti−1) (the
tenor of LIBOR here is δ), and suppose also the fixed rate per annum is K. In a
receiver swap on a principal of $1, the holder pays δL(Ti−1, Ti−1) at Ti and receives
δK. Problem 10.11 asks you to price this swap at time zero.

2. Swaps and swaptions
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a) Generally, the swap rate K of the contract when it is initiated is 0. This leads
to formula (10.7.23) in Shreve. Show this formula is equivalent to

K =
1−B(0, Tn+1)

δ
∑n+1

j=1 B(0, Tj)
.

b) The analysis of Exercise 10.11 in Shreve and the formula from part a) immedi-
ately generalize: The swap rate initiated at time Tm with payments at Tm+1, . . . , Tn+1

is

Km =
1−B(Tm, Tn+1)

δ
∑n+1

j=m+1B(Tm, Tj)
.

The denominator of this formula is the value at Tm of a portfolio consisting of δ units
of n + 1−m zero coupon bonds, one for each of the maturity dates Tm+1, . . . , Tn+1.
The value of this portfolio at any time t ≤ Tm is

Sn+1
m (t) = δ

n+1∑
j=m+1

B(t, Tj).

This is called the accrual factor or the present value of a basis point. Effectively, it
is a discount factor for computing swap rates.

Now we want to generalize part a) of this problem. (Once you have understood
the preliminary material, this is fairly simple.) Consider the swap that exchanges
floating rate for fixed rate at times Tm+1, . . . , Tn+1. This is called a Tm× (Tn+1−Tm)
payer option. Show that, to the party receiving the fixed leg payments and paying
the floating leg, the value of this swap for a fixed K at time t ≤ Tm is

δK
n+1∑

j=m+1

B(t, Tj)− δ
n+1∑

j=m+1

B(t, Tj)L(t, Tj−1)

From this, deduce that the forward swap rate at t, i.e. the swap rate that makes the
value at t equal zero, is

Rn+1
m (t) =

B(t, Tm)−B(t, Tn+1)

Sn+1
m (t)

.

3. Swaps and Swaptions, continued.
The accrual factor Sn+1

m (t), defined in the previous problem for 0 ≤ t ≤ Tm+1,
can be used as a numéraire on this time interval. Let Qn+1

m denote the risk-neutral
(martingale) measure for numéraire {Sn+1

m ; 0 ≤ t ≤ Tm+1}; this is called the annuity
or swap measure. Forward swap rates, as defined in problem 4, are martingales under
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Qn+1
m over the appropriate time interval, because the accrual rate appears in the

denominator.

a) Let P̃ be the usual risk-neutral measure for prices denominated in dollars. Show

dQn+1
m

dP̃
=

∑n+1
j=m+1D(Tm+1)B(Tm+1, Tj)∑n+1

j=m+1B(0, Tj)

b) The value of a payer swap at time Tm with fixed interest rate K is

Vm = δ
n+1∑

j=m+1

B(Tm, Tj)L(Tm, Tj−1)− δK
n+1∑

j=m+1

B(Tm, Tj)

On the other hand we know that

0 = δ
n+1∑

j=m+1

B(Tm, Tj)L(Tm, Tj−1)− δRn+1
m (Tm)

n+1∑
j=m+1

B(Tm, Tj) (1)

where Rn+1
m (t) denotes the forward swap rate as defined in problem 2.

A Tm× (Tn+1− Tm) payer swaption at strike K gives its holder the right, but not
the obligation to enter into a Tm × (Tn+1 − Tm) swap with fixed rate K at time Tm.
Hence the payoff of this option is max{Vm, 0}.

(i) First show that the payoff equals Sn+1
m (Tm)(Rn+1

m (Tm)−K)+. Hint: Vm is not
changed by subtracting the expression on the right-hand side of (1) from Vm.

(ii) Use this to show that the price at t of the swaption is

V (t) = Sn+1
m (t)EQn+1

m

[
(Rn+1

m (Tm)−K)+|F(t)
]
.

(iii) The final step is much like the derivation of Black’s caplet formula (see
Shreve). A regular swap market model assumes that there are deterministic volatility
functions σ0,n+1(u), . . . , σn,n+1(u) such that

dRn+1
m (t) = Rn+1

m σm,n+1(t) dW
n+1
m (t),

where W n+1
m is a Brownian motion under Qn+1

m . Assuming a regular swap model with
given σm,n+1(t) functions, find the price at time t ≤ Tm of a Tm × (Tn+1 − Tm) payer
swaption. The answer is called Black’s formula for swaptions.

For more background on swap market models and swaptions, see Björk, Arbitrage
Theory in Continuous Time, Chapter 24.
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4. (See posted notes on Gaussian random vectors and processes for background on
this problem.) Consider a multi-factor, Vasicek model of the form

dY (t) = GY (t) dt+B · dW, R(t) = δ0 + δ · Y (t).

Here X is an m-vector valued process; G is an m×m matrix; B is an m× d matrix,
and W is a d-dimensional Brownian motion; δ is an m-vector. Show that this is an
affine-yield model of the type

B(t, T ) = exp{−C(T − t) · Y (t)− A(T − t)},

where C(T − t) is m-vector valued, and derive expressions for C(T − t) and A(T − t)
in terms of B, δ0, δ, and esG, 0 ≤ s ≤ T .
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